Part Number Hot Search : 
71101 MV6951 BQ2430 80006 LM134 5369B 5257B 1N1436
Product Description
Full Text Search
 

To Download OP40007 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Quad Low Offset, Low Power Operational Amplifier OP400
FEATURES
Low input offset voltage: 150 V maximum Low offset voltage drift over -55C to +125C: 1.2 pV/C maximum Low supply current (per amplifier): 725 A maximum High open-loop gain: 5000 V/mV minimum Input bias current: 3 nA maximum Low noise voltage density: 11 nV/Hz at 1 kHz Stable with large capacitive loads: 10 nF typical Pin-compatible to LM148, HA4741, RM4156, and LT1014, with improved performance Available in die form
OUT A 1 -IN A 2 +IN A 3 V+ 4 +IN B 5 -IN B 6 OUT B 7
- + + - - + + -
FUNCTIONAL BLOCK DIAGRAMS
OUTA 1
14 13 12
16
- + + -
OUT D -IN D +IN D V- +IN C -IN C OUT C
00304-002
OUT D -IN D +IN D V- +IN C
00304-001
-IN A 2 +IN A 3 V+ 4 +IN B 5 -IN B 6 OUT B 7 NC 8
15 14
OP400
- + + -
13 12 11 10 9
OP400
11 10 9 8
-IN C OUT C
NC
NC = NO CONNECT
Figure 1. 14-Pin Ceramic DIP (Y-Suffix) and 14-Pin Plastic DIP (P-Suffix)
Figure 2. 16-Pin SOIC (S-Suffix)
GENERAL DESCRIPTION
The OP400 is the first monolithic quad operational amplifier that features OP77-type performance. Precision performance is not sacrificed with the OP400 to obtain the space and cost savings offered by quad amplifiers. The OP400 features an extremely low input offset voltage of less than 150 V with a drift of less than 1.2 V/C, guaranteed over the full military temperature range. Open-loop gain of the OP400 is more than 5 million into a 10 k load, input bias current is less than 3 nA, CMR is more than 120 dB, and PSRR is less than 1.8 V/V. On-chip Zener zap trimming is used to achieve the low input offset voltage of the OP400 and eliminates the need for offset nulling. The OP400 conforms to the industrystandard quad pinout, which does not have null terminals. The OP400 features low power consumption, drawing less than 725 A per amplifier. The total current drawn by this quad amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry-standard op amp. Voltage noise density of the OP400 is a low 11 nV/Hz at 10 Hz, half that of most competitive devices. The OP400 is pin-compatible with the LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems having these devices. The OP400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical.
V+
BIAS
VOLTAGE LIMITING NETWORK +IN -IN
OUT
V-
00304-003
Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown)
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2007 Analog Devices, Inc. All rights reserved.
OP400 TABLE OF CONTENTS
Features .............................................................................................. 1 Functional Block Diagrams............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Typical Performance Characteristics ..............................................6 Applications..................................................................................... 11 Dual Low Power Instrumentation Amplifier ......................... 11 Bipolar Current Transmitter ..................................................... 12 Differential Output Instrumentation Amplifier .................... 12 Multiple Output Tracking Voltage Reference......................... 13 Outline Dimensions ....................................................................... 14 Ordering Guide .......................................................................... 15 SMD Parts and Equivalents ...................................................... 15
REVISION HISTORY
1/07--Rev. D to Rev. E Updated Format..................................................................Universal Changes to Figure 1 and Figure 2................................................... 1 Removed Figure 4............................................................................. 4 Changes to Table 3............................................................................ 4 Changes to Figure 16 through Figure 19, Figure 21..................... 8 Changes to Figure 27........................................................................ 9 Changes to Figure 28...................................................................... 10 Changes to Figure 33...................................................................... 13 Updated Outline Dimensions ....................................................... 14 3/06--Rev. C to Rev. D Updated Format..................................................................Universal Deleted Wafer Test Limits Table ..................................................... 4 New Package Drawing: R-14 ......................................................... 15 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide .......................................................... 16 6/03--Rev. B to Rev. C Edits to Specifications .......................................................................2 10/02--Rev. A to Rev. B Addition of Absolute Maximum Ratings .......................................5 Edits to Outline Dimensions......................................................... 12 4/02--Rev. 0 to Rev. A Edits to Features.................................................................................1 Edits to Ordering Information ........................................................1 Edits to Pin Connections..................................................................1 Edits to General Descriptions..................................................... 1, 2 Edits to Package Type .......................................................................2
Rev. E | Page 2 of 16
OP400 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = 15 V, TA = +25C, unless otherwise noted. Table 1.
Parameter INPUT CHARACTERISTICS Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Resistance Differential Mode Input Resistance Common Mode Large Signal Voltage Gain Symbol VOS Conditions Min OP400A/E Typ Max 40 0.1 VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz 0.1 0.75 0.5 10 200 VO = 10 V RL = 10 k RL = 2 k Input Voltage Range 1 Common-Mode Rejection Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Channel Separation Capacitive Load Stability NOISE PERFORMANCE Input Noise Voltage Density 3 Input Noise Current Input Noise Current Density
1 2
Min
OP400F Typ Max 60 0.1 0.1 0.75 0.5 10 200 230
Min
OP400G/H Typ Max 80 0.1 0.1 0.75 0.5 10 200 300
Unit V V/mo nA nA V p-p M G
150
IOS IB en p-p RIN RINCM AVO
1.0 3.0
2.0 6.0
3.5 7.0
IVR CMR CIN
VCM = 12 V
5000 12,000 2000 3500 12 13 120 140 3.2
3000 1500 12 115
7000 3000 13 140 3.2
3000 1500 12 110
7000 3000 13 135 3.2
V/mV V/mV V dB pF
VO PSRR ISY
RL = 10 k VS = 3 V to 18 V No load
12
12.6 0.1 600 1.8 725
12
12.6 0.1 600 3.2 725
12
12.6 0.2 600 5.6 725
V V/V A
SR GBWP CS
0.1 AV = 1 VO = 20 V p-p, fO = 10 Hz 2 AV = 1, no oscillations fO = 10 Hz3 fO = 1000 Hz3 0.1 Hz to 10 Hz fO = 10 Hz 123
0.15 500 135 10
0.1
0.15 500 135 10
0.1
0.15 500 135 10
V/s kHz dB nF
123
123
en in p-p in
22 11 15 0.6
36 18
22 11 15 0.6
36 18
22 11 15 0.6
nV/Hz nV/Hz pA p-p pA/Hz
Guaranteed by CMR test. Guaranteed but not 100% tested. 3 Sample tested.
Rev. E | Page 3 of 16
OP400
@ VS = 15 V, -55C TA +125C for OP400A, unless otherwise noted. Table 2.
Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range 1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability
1
Symbol VOS TCVOS IOS IB AVO IVR CMR VO PSRR ISY
Conditions
Min
Typ 70 0.3 0.1 1.3 9000 2300 12.5 115 12.4 0.2 600 8
Max 270 1.2 2.5 5.0
Unit V V/C nA nA V/mV V dB
VCM = 0 V VCM = 0 V VO = 10 V, RL = 10 k RL = 2 k VCM = 12 V RL = 10 k VO = 3 V to 18 V No load AV = 1, no oscillations
3000 1000 12
130
12
3.2 775
V/V A nF
Guaranteed by CMR test.
@ VS = 15 V, -25C TA +85C for OP400E/F, 0C TA 70C for OP400G, -40C TA +85C for OP400H, unless otherwise noted. Table 3.
Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Symbol VOS TCVOS IOS VCM = 0 V E, F, G grades H grade VCM = 0 V E, F, G grades H grade VCM = 0 V RL = 10 k RL = 2 k VCM = 12 V RL = 10 k RL = 2 k VS = 3 V to 18 V No load Conditions Min OP400E Typ Max 60 0.3 220 1.2 Min OP400F Typ Max 80 0.3 350 2.0 Min OP400G/H Typ Max 110 0.6 400 2.5 Unit V V/C
0.1
2.5
0.1
3.5
0.2 0.2 1.0 1.0 2000 1000 12 105 12 11 5000 2000 12.5 130 12.6 12.2 0.3 600
6.0 12.0 12.0 20.0
nA nA nA nA V/mV V/mV V dB V V
Input Bias Current
IB
0.9
5.0
0.9
10.0
Large-Signal Voltage Gain
AVO
Input Voltage Range 1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability
1
IVR CMR VO
3000 1500 12 115 12 11
10,000 2700 12.5 135 12.4 12 0.15 600 3.2 775
2000 1000 12 110 12 11
5000 2000 12.5 135 12.4 12 0.15 600 5.6 775
PSRR ISY
10.0 775
V/V A
No oscillations
10
10
10
nF
Guaranteed by CMR test. Rev. E | Page 4 of 16
OP400 ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Supply Voltage Differential Input Voltage Input Voltage Output Short-Circuit Duration Storage Temperature Range P, Y Packages Lead Temperature (Soldering 60 sec) Junction Temperature (TJ) Range Operating Temperature Range OP400A OP400E, OP400F OP400G OP400H Rating 20 V 30 V Supply voltage Continuous -65C to +150C 300C -65C to +150C -55C to +125C -25C to +85C 0C to 70C -40C to +85C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply to both dice and packaged parts, unless otherwise noted.
THERMAL RESISTANCE
JA is specified for worst-case mounting conditions, that is, JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SOIC package. Table 5. Thermal Resistance
Package Type 14-Pin Ceramic DIP (Y) 14-Pin Plastic DIP (P) 16-Pin SOIC (S) JA 94 76 88 JC 10 33 23 Unit C/W C/W C/W
ESD CAUTION
Rev. E | Page 5 of 16
OP400 TYPICAL PERFORMANCE CHARACTERISTICS
3 TA = 25C VS = 15V
CHANGE IN OFFSET VOLTAGE (V) INPUT OFFSET CURRENT (pA)
120 VS = 15V
110
2
100
1
90
0
00304-004
80 -75 -50 -25 0 25 50 75 100
0
1
2
3
4
5
125
TIME (Minutes)
TEMPERATURE (C)
Figure 4. Warmup Drift
70 VS = 15V 60
INPUT OFFSET VOLTAGE (V) INPUT BIAS CURRENT (nA)
1.0 1.1
Figure 7. Input Offset Current vs. Temperature
50
0.9
40
0.8
30
20
00304-005
0.7
00304-008
10 -75
-50
-25
0
25
50
75
100
125
0.6 -15
-10
-5
0
5
10
15
TEMPERATURE (C)
COMMON-MODE VOLTAGE (V)
Figure 5. Input Offset Voltage vs. Temperature
2.0 VS = 15V 1.6
INPUT BIAS CURRENT (nA) COMMON-MODE REJECTION (dB)
Figure 8. Input Bias Current vs. Common-Mode Voltage
140 120 100 80 60 40 20 0 TA = 25C VS = 15V
1.2
0.8
0.4
00304-006
0 -75
-50
-25
0
25
50
75
100
125
1
10
100
1k
10k
100k
TEMPERATURE (C)
FREQUENCY (Hz)
Figure 6. Input Bias Current vs. Temperature
Figure 9. Common-Mode Rejection vs. Frequency
Rev. E | Page 6 of 16
00304-009
00304-007
OP400
100
2.5
FOUR AMPLIFIERS TA = 25C
NOISE VOLTAGE DENSITY (nV/ Hz)
TOTAL SUPPLY CURRENT (mA)
2.4
2.3
2.2
00304-013
00304-010
10
1
10
100 FREQUENCY (Hz)
1k
2.1 2
4
6
8
10
12
14
16
18
20
SUPPLY VOLTAGE (V)
Figure 10. Noise Voltage Density vs. Frequency
1k TA = 25C VS = 15V
Figure 13. Total Supply Current vs. Supply Voltage
2.5 FOUR AMPLIFIERS VS = 15V
CURRENT NOISE DENSITY (fA/ Hz)
TOTAL SUPPLY CURRENT (mA)
800
2.4
600
2.3
400
2.2
200
00304-011
2.1 -75 -50 -25 0 25 50 75 100 125
0
1
10
100 FREQUENCY (Hz)
1k
150
TEMPERATURE (C)
Figure 11. Current Noise Density vs. Frequency
140 120 100 80 60 40 20 0 0.1
Figure 14. Total Supply Current vs. Temperature
POWER SUPPLY REJECTION (dB)
NEGATIVE SUPPLY
POSITIVE SUPPLY
00304-012
0
2
4
6
8
10
1
10
100 FREQUENCY (Hz)
1k
10k
100k
TIME (Seconds)
Figure 12. 0.1 Hz to 10 Hz Noise
Figure 15. Power Supply Rejection vs. Frequency
Rev. E | Page 7 of 16
00304-015
00304-014
OP400
144 VS = 15V
POWER SUPPLY REJECTION (dB)
142
80 AV = 1000
TA = 25C VS = 15V
60
GAIN (dB)
140
40
AV = 100
138
AV = 10 20
136
00304-016
0
AV = 1000
00304-019
134 -75
-50
-25
0 25 50 75 TEMPERATURE (C)
100
125
150
1
10
100
1k 10k FREQUENCY (Hz)
100k
1M
Figure 16. Power Supply Rejection vs. Temperature
5k VS = 15V 4k RL = 2k
Figure 19. Closed-Loop Gain vs. Frequency
TA = 25C VS = 15V
OUTPUT SWING (V p-p AT 1% Distortion)
25
OPEN-LOOP GAIN (V/mV)
20
3k
15
2k
10
1k
00304-017
5
00304-020
0 -75
-50
-25
0 25 50 75 TEMPERATURE (C)
100
125
150
10
100
1k FREQUENCY (Hz)
10k
100k
Figure 17. Open-Loop Gain vs. Temperature
TA = 25C VS = 15V
Figure 20. Maximum Output Swing Frequency
TA = 25C 10 VS = 15V VOUT = 10V p-p RL = 2k
DISTORTION (%)
120 100 80 60 40 20 0
OPEN-LOOP GAIN (dB)
PHASE SHIFT (Degrees)
0 GAIN PHASE 45 90 135
1
AV = 100 AV = 10 AV = 1
0.1
0.01
10
100
1k 10k FREQUENCY (Hz)
100k
1M
00304-018
100
1k FREQUENCY (Hz)
10k
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency
Figure 21. Total Harmonic Distortion vs. Frequency
Rev. E | Page 8 of 16
000304-021
180
0.001
OP400
50 45 40 35 TA = 25C VS = 15V AV = +1 FALLING
TA = 25C VS = 15V AV = +1
OVERSHOOT (%)
30 25 20 15 10
000304-022
RISING
5 0 0 0.5 1.0 1.5 2.0 CAPACITIVE LOAD (nF) 2.5
5V
100s
3.0
Figure 22. Overshoot vs. Capacitive Load
TA = 25C 34
SHORT-CIRCUIT CURRENT (mA)
Figure 25. Large Signal Transient Response
VS = 15V
TA = 25C VS = 15V AV = +1
32 SINKING
30 SOURCING
00304-023
28
20mV
5s
0
1
2 3 TIME (Minutes)
4
5
Figure 23. Short Circuit vs. Time
140 TA = 25C VS = 15V VIN = 20V p-p
Figure 26. Small Signal Transient Response
TA = 25C VS = 15V AV = +1
CHANNEL SEPARATION (dB)
130
120
110
100
00304-024
20mV
5s
90 10
100
1k FREQUENCY (Hz)
10k
100k
Figure 24. Channel Separation vs. Frequency
Figure 27. Small Signal Transient Response, CLOAD = 1 nF
Rev. E | Page 9 of 16
00304-027
00304-026
00304-025
OP400
100 10k
- - - - OP400 +
1/4
OP400 +
1/4
OP400 +
1/4
eOUT OP400 + TO SPECTRUM ANALYZER
1/4
eOUT (
Figure 28. Noise Test Schematic
-18V
14
- + +
13
12
11 V-
10
9
- + +
8
4
3
V+ 1 GND +18V
00304-029
2
3
4
5
6
Figure 29. Burn-In Circuit
Rev. E | Page 10 of 16
-
-
1
2
7
00304-028
nV ~ ) 2 x en ( nV ) x 101 Hz = Hz
OP400 APPLICATIONS
The OP400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load-driving capability of the OP400. Total supply current can be reduced by connecting the inputs of an unused amplifier to V-. This turns the amplifier off, lowering the total supply current. Table 6. Gain Bandwidth
Gain 5 10 100 1000 Bandwidth 150 kHz 67 kHz 7.5 kHz 500 Hz
+ VIN -
+ +
DUAL LOW POWER INSTRUMENTATION AMPLIFIER
A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 30. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (G = 1000). Offset voltage drift is typically 0.4 V/C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 6. The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from -10 V to +10 V if required.
OP400A OP400A
- 1/4 -
1/4
VOUT
REFERENCE 20k
5k
5k
20k
RG
VOUT VIN
=5+
40,000 RG
+ VIN -
+ +
OP400A OP400A
- 1/4 -
1/4
VOUT
REFERENCE 20k
5k
5k
20k
00304-030
RG
Figure 30. Dual Low Power Instrumentation Amplifier
Rev. E | Page 11 of 16
OP400
BIPOLAR CURRENT TRANSMITTER
In the circuit of Figure 31, which is an extension of the standard three op amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is 5 mA, with voltage compliance equal to 10 V when using 15 V supplies. Output impedance of the current transmitter exceeds 3 M, and linearity is better than 16 bits with gain set for a full-scale input of 100 V.
DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER
The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at 15 V, to a maximum of 24 V p-p. The differential output instrumentation amplifier shown in Figure 32 can provide an output voltage swing of 48 V p-p when operated with 15 V supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs swing 24 V p-p, but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can be used to set a common-mode output voltage over the range 10 V. The PSRR of the amplifier is less than 1 V/V with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4 V/C over the military temperature range.
25k
-
+
OP400E
-
25k
1/4
25k
-
OP400E
+
1/4
VOUT 200
IOUT
5mA
VIN
RG 25k
-
OP400E
+
1/4
25k
25k
OP400E
-
00304-031
1/4
+
+ IOUT
-
VIN 200
1 - 50,000 RG
Figure 31. Bipolar Current Transmitter
22pF -
+
OP400A
-
25k VIN RG
1/4
25k
25k
+
OP400A
25k
1/4
-
22pF
-
OP400A
+
1/4
25k
25k 22pF 25k 22pF
+
VIN VOUT
=
50k + R G RG
25k
VOUT
-
REFERENCE INPUT
+
Figure 32. Differential Output Instrumentation Amplifier
Rev. E | Page 12 of 16
00304-032
OP400A
1/4
OP400
MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE
Figure 33 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation under 25 V/mA. Line regulation is better than 15 V/V, and output voltage drift is under 20 V/C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 V p-p from the 10 V output and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs.
15V 10k 22k 1N4002
10V
+
OP400A
1F
2
1/4
7.5V
-
10k
REF 43 2.5V REFERENCE
4
6
10k
10k
+
OP400A
-
2F 10k 10k
1/4
+
OP400A
-
1/4
5V
+
10k
OP400A
1F
1/4
2.5V
-
Figure 33. Multiple Output Tracking Voltage Reference
Rev. E | Page 13 of 16
00304-033
OP400 OUTLINE DIMENSIONS
0.005 (0.13) MIN
14 1
0.098 (2.49) MAX
8
10.50 (0.4134) 10.10 (0.3976)
0.310 (7.87) 0.220 (5.59)
16
9
7
1
7.60 (0.2992) 7.40 (0.2913)
8
PIN 1
0.100 (2.54) BSC 0.785 (19.94) MAX
0.320 (8.13) 0.290 (7.37) 0.060 (1.52) 0.015 (0.38)
0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 1.27 (0.0500) BSC
10.65 (0.4193) 10.00 (0.3937)
0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36)
2.65 (0.1043) 2.35 (0.0925)
0.50 (0.0197) 0.25 (0.0098)
8 0 0.33 (0.0130) 0.20 (0.0079)
45
0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76)
15 0
0.015 (0.38) 0.008 (0.20)
SEATING PLANE
1.27 (0.0500) 0.40 (0.0157)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-013- AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 34. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14) [Y-Suffix] Dimensions shown in inches and (millimeters)
0.775 (19.69) 0.750 (19.05) 0.735 (18.67)
14 1 8
Figure 36. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (R-16) [S-Suffix] Dimensions shown in millimeters and (inches)
7
0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.060 (1.52) MAX 0.015 (0.38) MIN SEATING PLANE 0.005 (0.13) MIN 0.195 (4.95) 0.130 (3.30) 0.115 (2.92)
0.100 (2.54) BSC 0.210 (5.33) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.070 (1.78) 0.050 (1.27) 0.045 (1.14)
0.015 (0.38) GAUGE PLANE
0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX
COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 35. 14-Lead Plastic Dual In-Line Package [PDIP] (N-14) [P-Suffix] Dimensions shown in inches and (millimeters)
Rev. E | Page 14 of 16
070606-A
060606-A
OP400
ORDERING GUIDE
Model OP400AY OP400EY OP400FY OP400GP OP400GPZ 1 OP400HP OP400HPZ1 OP400GS OP400GS-REEL OP400GSZ1 OP400GSZ-REEL1 OP400HS OP400HS-REEL OP400HSZ1 OP400HSZ-REEL1 OP400GBC
1
Temperature Range -55C to +125C -25C to +85C -25C to +85C 0C to +70C 0C to +70C -40C to +85C -40C to +85C 0C to +70C 0C to +70C 0C to +70C 0C to +70C -40C to +85C -40C to +85C -40C to +85C -40C to +85C
Package Description 14-Lead CERDIP 14-Lead CERDIP 14-Lead CERDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W Die
Package Option Y-Suffix (Q-14) Y-Suffix (Q-14) Y-Suffix (Q-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16)
Z = Pb-free part.
SMD PARTS AND EQUIVALENTS
SMD Part Number 1 5962-8777101M3A 5962-8777101MCA
1
Analog Devices Equivalent OP400ATCMDA OP400AYMDA
For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website.
Rev. E | Page 15 of 16
OP400 NOTES
(c)2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00304-0-1/07(E)
Rev. E | Page 16 of 16


▲Up To Search▲   

 
Price & Availability of OP40007

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X